首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17102篇
  免费   1729篇
  国内免费   582篇
化学   1846篇
晶体学   38篇
力学   1923篇
综合类   433篇
数学   11413篇
物理学   3760篇
  2024年   25篇
  2023年   168篇
  2022年   382篇
  2021年   511篇
  2020年   355篇
  2019年   385篇
  2018年   420篇
  2017年   614篇
  2016年   694篇
  2015年   467篇
  2014年   921篇
  2013年   1069篇
  2012年   1017篇
  2011年   939篇
  2010年   822篇
  2009年   1044篇
  2008年   1068篇
  2007年   1131篇
  2006年   913篇
  2005年   796篇
  2004年   654篇
  2003年   590篇
  2002年   536篇
  2001年   482篇
  2000年   448篇
  1999年   342篇
  1998年   329篇
  1997年   313篇
  1996年   248篇
  1995年   253篇
  1994年   195篇
  1993年   189篇
  1992年   163篇
  1991年   121篇
  1990年   116篇
  1989年   86篇
  1988年   76篇
  1987年   61篇
  1986年   67篇
  1985年   79篇
  1984年   76篇
  1983年   23篇
  1982年   39篇
  1981年   24篇
  1980年   22篇
  1979年   36篇
  1978年   21篇
  1977年   34篇
  1976年   20篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
91.
92.
Meibao Ge  Yue Yu 《Applicable analysis》2017,96(10):1681-1697
The inverse problems of textile materials design on heat and moisture transfer properties are important and indispensable in applications in the body-clothing-environment system. We present an inverse problem of textile porosity determination (IPTPD) based on a nonlinear heat and moisture transfer model. Adopting the idea of the least-squares, the mathematical formulation of IPTPD is deduced to a regularized optimization problem with collocation method applied. The continuity of the regularized minimization problem is proved. By means of genetic algorithm (GA), the approximate solution of the IPTPD is numerically obtained. To reduce the computational cost, an improved algorithm based on BP neural network with GA is proposed in the numerical simulation. Compared with the direct GA searching, the computational cost is greatly reduced, which presents a similar result.  相似文献   
93.
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lca, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lca and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that:(i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm3 can be easily realized for as-mtSOFC with single-and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with lca2(2 mm, 40 mm) is determined for three representative (rin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.  相似文献   
94.
The k‐linkage problem is as follows: given a digraph and a collection of k terminal pairs such that all these vertices are distinct; decide whether D has a collection of vertex disjoint paths such that is from to for . A digraph is k‐linked if it has a k‐linkage for every choice of 2k distinct vertices and every choice of k pairs as above. The k‐linkage problem is NP‐complete already for [11] and there exists no function such that every ‐strong digraph has a k‐linkage for every choice of 2k distinct vertices of D [17]. Recently, Chudnovsky et al. [9] gave a polynomial algorithm for the k‐linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In this article, we use their result as well as the classical polynomial algorithm for the case of acyclic digraphs by Fortune et al. [11] to develop polynomial algorithms for the k‐linkage problem in locally semicomplete digraphs and several classes of decomposable digraphs, including quasi‐transitive digraphs and directed cographs. We also prove that the necessary condition of being ‐strong is also sufficient for round‐decomposable digraphs to be k‐linked, obtaining thus a best possible bound that improves a previous one of . Finally we settle a conjecture from [3] by proving that every 5‐strong locally semicomplete digraph is 2‐linked. This bound is also best possible (already for tournaments) [1].  相似文献   
95.
In this article, we consider a portfolio optimization problem of the Merton’s type with complete memory over a finite time horizon. The problem is formulated as a stochastic control problem on a finite time horizon and the state evolves according to a process governed by a stochastic process with memory. The goal is to choose investment and consumption controls such that the total expected discounted utility is maximized. Under certain conditions, we derive the explicit solutions for the associated Hamilton–Jacobi–Bellman (HJB) equations in a finite-dimensional space for exponential, logarithmic, and power utility functions. For those utility functions, verification results are established to ensure that the solutions are equal to the value functions, and the optimal controls are also derived.  相似文献   
96.
This article presents a local and parallel finite element method for the stationary incompressible magnetohydrodynamics problem. The key idea of this algorithm comes from the two‐grid discretization technique. Specifically, we solve the nonlinear system on a global coarse mesh, and then solve a series of linear problems on several subdomains in parallel. Furthermore, local a priori estimates are obtained on a general shape regular grid. The efficiency of the algorithm is also illustrated by some numerical experiments.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1513–1539, 2017  相似文献   
97.
The self‐adaptive intelligence gray predictive model (SAIGM) has an alterable‐flexible model structure, and it can build a dynamic structure to fit different external environments by adjusting the parameter values of SAIGM. However, the order number of the raw SAIGM model is not optimal, which is an integer. For this, a new SAIGM model with the fractional order accumulating operator (SAIGM_FO) was proposed in this paper. Specifically, the final restored expression of SAIGM_FO was deduced in detail, and the parameter estimation method of SAIGM_FO was studied. After that, the Particle Swarm Optimization algorithm was used to optimize the order number of SAIGM_FO, and some steps were provided. Finally, the SAIGM_FO model was applied to simulate China's electricity consumption from 2001 to 2008 and forecast it during 2009 to 2015, and the mean relative simulation and prediction percentage errors of the new model were only 0.860% and 2.661%, in comparison with the ones obtained from the raw SAIGM model, the GM(1, 1) model with the optimal fractional order accumulating operator and the GM(1, 1) model, which were (1.201%, 5.321%), (1.356%, 3.324%), and (2.013%, 23.944%), respectively. The findings showed both the simulation and the prediction performance of the proposed SAIGM_FO model were the best among the 4 models.  相似文献   
98.
99.
The Barzilai–Borwein (BB) gradient method has received many studies due to its simplicity and numerical efficiency. By incorporating a nonmonotone line search, Raydan (SIAM J Optim. 1997;7:26–33) has successfully extended the BB gradient method for solving general unconstrained optimization problems so that it is competitive with conjugate gradient methods. However, the numerical results reported by Raydan are poor for very ill-conditioned problems because the effect of the degree of nonmonotonicity may be noticeable. In this paper, we focus more on the nonmonotone line search technique used in the global Barzilai–Borwein (GBB) gradient method. We improve the performance of the GBB gradient method by proposing an adaptive nonmonotone line search based on the morphology of the objective function. We also prove the global convergence and the R-linear convergence rate of the proposed method under reasonable assumptions. Finally, we give some numerical experiments made on a set of unconstrained optimization test problems of the CUTEr collection. The results show the efficiency of the proposed method in the sense of the performance profile introduced (Math Program. 2002;91:201–213) by Dolan and Moré.  相似文献   
100.
In this paper, we propose two proximal-gradient algorithms for fractional programming problems in real Hilbert spaces, where the numerator is a proper, convex and lower semicontinuous function and the denominator is a smooth function, either concave or convex. In the iterative schemes, we perform a proximal step with respect to the nonsmooth numerator and a gradient step with respect to the smooth denominator. The algorithm in case of a concave denominator has the particularity that it generates sequences which approach both the (global) optimal solutions set and the optimal objective value of the underlying fractional programming problem. In case of a convex denominator the numerical scheme approaches the set of critical points of the objective function, provided the latter satisfies the Kurdyka-?ojasiewicz property.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号